Sensor Network Simulation

Kevin Driver, Russell Glasser, Oswin Housty

December 7, 2006

University of Texas, Austin, TX, USA

Abstract:

Wireless microsensor networks have been identified as one of the most important technologies for the 21st century. The idea of creating an automated network of intelligent agents that can interact with their environment and report unusual conditions has stimulated the imagination of computer scientists everywhere.

However, it is widely known that sensor networks are difficult to program and even harder to debug, due to the distributed nature of the network and the limited output resources and means of interaction of the devices themselves. We have decided that creating a rich graphical simulation would be an excellent first step in alleviating these problems. This simulation would allow developers to directly observe the entire environment at once, while also providing access to all the debugging tools of a modern compiler environment.

In this project, we have created a simulation with a graphical user interface in Java. Our program attempts to mix the simulation of communication and routing protocols among sensors with virtual representations of a real world object, such as the sensors and other entities in the environment.

Introduction:

In our simulation, each sensory device is modeled as a separate object running in its own thread. Elements of the environment are modeled as additional objects, and the sensors may query aspects of the environment based upon their physical position and sensor type to determine information about environmental objects. Elements modeled by our simulation include the following:

· Routing algorithms

· Tracking targeted objects

· Detection and alerting of anomalous conditions

We base the behaviors on algorithms presented in existing papers on sensor networks.

We have constructed a Graphical User Interface that has three phases. In the setup phase, the user selects various types of sensor agents, such as vibration, light, sound, etc. Users create instances of these agents by clicking on the area map.

In the simulation phase, routing paths among the sensors are set up and visually displayed, and sensors which notice unusual events might change color.

In the replay phase, the interpolated path of an anomaly through the environment is graphically displayed.
Motivation:
Our goal is to simulate not only a sensor network, but also the physical environment in which it operates. We reviewed several samples of existing literature to determine whether anyone had previously attempted this kind of project. For details, see the “Related work” section. We found that there were several packages for simulating wireless networks, but in general they seem to rely on external input for the signals that would occur in a real world environment.

In a time when physics students are hired to make increasingly realistic games, we see no reason why the physical events in a typical environment should not also be simulated. One advantage of this approach is that a developer could essentially create any event that he or she wishes to test, without going through the trouble of purchasing (for example) real tanks and airplanes to detect. A robust system would, of course, be capable of switching between input from a simulated object and real data retrieved from sensors. Providing a state of the art physics simulation is obviously beyond the scope of this paper; we are only concerned here with modeling and displaying a simple world simulation.

The goal for the sensor network routing protocol modeled was to achieve low message overhead, scalability and a relatively simple implementation. These goals allow our simulation to accurately model a real world sensor network routing protocol. We considered three types of sensor network protocols, “Multi-hop routing protocols”, “Zone Based routing” and Low Energy Adaptive Cluster Head routing protocol (LEACH) [1]. Of these, the LEACH protocol was the most suitable for our implementation. For more details, see the “Related work”.

Architecture:
We created the following class hierarchy:

[image: image1.jpg]GUI
Application |
/’
| N\
/ X
/ X
r'l N
v X
Display Control
Panel Panel

Environment

Monitor

7| (extends thread)

Entity

Sound

ibratio

Figure 1: Class Hierarchy

Our physical world is represented by the Environment class, which serves as an all-seeing observer. The environment contains all instances of “Entities”, which are our term for any object that has a spatial location. The car starts in a fixed location; the Monitor is an omniscient Entity not represented on the screen; all sensors are created dynamically by the user after the program starts.

Middleware Extensibility:
The design goals for the project included the ability to have our simulation framework be applicable to disparate underlying sensor networks. Many measures were taken in order to ensure middleware portability of the code, and this pays dividends to the simulation technology as a whole.

An elaborate and highly extensible hierarchy, as described above, sets a precedent by incorporating robust, extensible functionality at different levels of the API, allowing for intuitive and rapid development. Sensors natively support management of neighbors. This allows for specific Sensor subtypes to be implemented easily which have innate neighbor-relational functionality. One level above them, Nodes include abstractions for messaging – sending, handling, enqueuing and dequeuing. This layer allows for the abstraction of different networking protocols and services as well as the message types and formats that are sent between network nodes. Some argue that publish subscribe model for middleware is more relevant, and our model is in line with this statement [2], yet also supports abstraction of more traditional IP-based communication. Finally the Entity includes basic location information, which is a common to nearly every element of the simulation and should be very useful to other implementations using this middleware.

Because of these relations, our code lends itself significantly to reuse, encourages other protocols to be tested, and allows for the participants in the simulation to be altered and/or extended in order to develop vastly different simulation scenarios.

Graphical Representation:
[image: image2.png]< Sensor Network

Next Phase

/' O creatssenors
® Run

O Replay

Figure 2: Program execution

The program runs in three phases: 1. Sensor placement, 2. Movement tracking, 3. Monitor replay.

During the first phase, the user may click the screen anywhere to create new sensors. The type of sensor created depends on the option selected in the drop box.

During the second phase (see figure 2) nodes are joined in clusters via the LEACH protocol, and the user can move the “car” around the screen by clicking anywhere on the display area. As the car drives around, nearby sensors light up to indicate that they have detected a “proximity violation”. The sensors transmit proximity violations to the Monitor.

During the third phase, the Monitor uses the messages collected to replay the path taken by the car in phase two. The Sensor readings are represented by a series of orange circles representing the distance interpreted via volume, vibration, and light intensity.

The sensors are modeled as threads, so each one executes independently of the others. The only communication they have with each other is through a simple message passing model. When a Node wishes to transmit a message, it calls the method “sendMsg”, which requires as inputs a handle on another Node and a String to transmit. (We did not model radio broadcasts, so we have simplified by assuming that Nodes can identify other nodes within a limited radius.) Since the real world would involve some lag between the time a message is sent and the time it is received, a Node which receives a message does not process it immediately. Instead, the message is placed in a queue, and one message is dequeued on each “tick” (currently set at 100 milliseconds).

Sensor readings are provided via the Environment object. For instance, when a SoundSensor is polled to check its volume level, it queries a method in the Environment to see what it can hear. The Environment checks location of the Car (which is currently the only noisy Entity in the simulation) and then a volume level in decibels can be calculated. A similar process occurs for a VibrationSensor or LightSensor.

Simulated Sensor Network:

The sensor network we simulated enables communication by organizing sensors into clusters that pass messages to a centralized cluster-head. A cluster is a collection of nodes organized by proximity to send messages to a central point (cluster-head). A cluster-head is a node that has been identified by other nodes to forward messages to a base station. After organization, the cluster-heads stay awake to receive messages from cluster members. The other cluster members wake periodically to check for a proximity violation.

The sensor network consists of three main parts: cluster-head election, cluster formation and message communication.

Cluster-head election takes place during “Simulation Phase”. Sensors elect a cluster-head by calculating the distance (cluster radius) between its position and other sensor nodes. If a node is within the cluster radius, it is considered as part of the same cluster. If the sensor is part of the same cluster, the current cluster-head identification is compared against the new sensor’s identification. If the new sensor has a lower identification, it is considered to be the cluster-head.

Cluster formation is only carried out by cluster-heads. If a sensor identifies itself as a cluster-head, it searches through the list of sensor nodes to identify cluster members. This is done by calculating the cluster radius between the cluster-head and each sensor. If a sensor is less than the cluster radius, it is added to the cluster. Sensors do not carry a list of other cluster members; they only identify the cluster-head.

Message communication in the sensor network is determined by the type of sensor node initiating the communication. If a sensor detects an intruder, it initiates communication by sending an intruder detection message to its cluster-head. On receiving the message from the sensor, the cluster-head forwards the message to the monitor. If the cluster-head detects an intruder, it sends an intruder detection message directly to the monitor.

Monitoring the Environment:
Our subset of LEACH employs cluster-heads to report information, in the form of messages, about the state and properties of the environments and objects within. With the cluster-heads supplying this information, LEACH typically has a “Base Station” or, in our case, a Monitor to process, record, store, and query messages and events generated in the system. The Monitor we implement receives messages from the cluster-heads, processes them, and stores the information in such a way that it is possible to recreate the state of the environment in given “snapshots” thus allowing the striking water-drop effect of watching the rings show up around the sensors in phase 3. Again, through the robust architecting of our sensor network modeling middleware, we are able to define this Monitor (and even the “target” traversing the environment) in terms of Nodes and Entities. We believe this to be a minute example of the potential environmental monitoring/target modeling possible.

Tracking an Anomaly:
Building on the strengths of each layer in our framework, and lastly the Monitor, it is now possible to recreate the path of an anomaly through the environment. As the Monitor receives messages from the cluster-heads notifying it of activity, it then queries the specific sensor types which are members of the cluster for their respective readings of vibration, decibel-level, and luminosity. Based on these readings, the Monitor is able to apply simple physics calculations to convert the readings into a measure of approximate proximity. It stores these “blips” and their radii into a data structure to log successive movements of the anomaly through the environment. This is somewhat related to the paper on target tracking algorithms in that our anomaly can be randomly “driven” through the environment and is recorded as it does so. More about these algorithms can be found in the section on “Related Work.” Our model does not account for multiple targets or false-alarm detection; however we have not observed any direct evidence of false alarms in our simulations.

Conclusion:

Our simulation does indeed succeed at the challenges it set out to address. Our sensor network simulation provides APIs which enable rapid sensor network development, and the graphical tooling enables real-time visual debugging. It is our belief that the architecture of this product is sufficiently in the realm of extensibility and adaptability that it forms a valuable framework for development of sensor network simulations for all types of environmental anomalies, network protocols, and node types.

Future work:

Here are some ideas for ways that this project could be extended in the future:

· More realistic physics should be employed in the simulation, including better modeling of how sound and vibrations work, etc.

· More than one object could be tracked at once, or three-dimensional tracking of flying objects such as planes.

· Battery life of non-wired nodes.

· Extensibility to allow for different routing algorithms.

· Our simulation of the LEACH protocol made some attempt to model the fact that sensors have limited communication range; however, they are allowed to freely communicate with the Monitor from any location. A more thorough simulation of this or other protocols would have required a network path to a base station, rather than a disembodied monitor which all cluster-heads can reach directly.

Related work:

Target Tracking Algorithms

The “hierarchical multiple tracking Algorithm”[3] implemented randomization of targets and focused on tracking multiple targets. The algorithm took false alarms and noise into consideration for a more realistic application. The design was scalable, autonomous, and supported low communication. The algorithm used a weighted sum in conjunction with a shortest path calculation. All data was sent to “super-nodes” that were used to convey information. This implementation is similar to our approach, but does not implement clusters.

Network Simulators

We considered three existing examples of sensor network simulations: TOSSIM, J-Sim, and Ptolemy II. While these projects contained important ideas, none of them were concerned with the goal that we were trying to accomplish. In their own words:

TOSSIM -

“TOSSIM captures the behavior and interactions of networks of thousands of TinyOS motes at network bit granularity… The TOSSIM architecture is composed of five parts: support for compiling TinyOS component graphs into the simulation infrastructure, a discrete event queue, a small number of re-implemented TinyOS hardware abstraction components, mechanisms for extensible radio and ADC models, and communication services for external programs to interact with a simulation.”[4]

Ptolemy II -

“The Ptolemy II project studies heterogeneous modeling, simulation, and design of concurrent systems. The Ptolemy II software has the ability to model complex systems through a simple actor/component based user interface.”[6]

These two applications were designed to model communication within a network, but do not model physical objects in the real world. TOSSIM does allow external input to handle simulated physical objects, but does not provide its own method for modeling these objects. Ptolemy simulates sensor nodes at a very low level, dealing with ports and battery life. Our implementation is not concerned with the low level behavior of the sensor nodes. Instead, we are working at a level that might best be described as middleware.

The paper on J-Sim[7] does mention several scenarios where target tracking is modeled, but in each case they rely on input captured from video or other representations of real events.

Sensor Networks

In constructing the simulation environment, we considered three sensor network routing protocols: “Multi-hop routing protocols”, “Zone Based routing” and Low Energy Adaptive Cluster Head routing protocol (LEACH) [1].

Multi-hop routing protocols or static clustering -

The “Multi-hop routing protocols or static clustering” [8, 9] use clusters to broadcast information about energy to static members of the cluster. We found that this implementation was not very scalable, so we could not model large sensor networks.

Zone Based routing -

The “Zone Based routing” [8, 10] is a hierarchical approach to routing in sensor networks which groups nodes into geographic zones to control routing. It uses energy estimation based on data transmission direction. This implementation was not chosen because geographic networks were not being simulated.

LEACH -

The LEACH routing protocol was designed to save power by randomizing the energy distribution in sensor networks. The sensor nodes form “clusters” and elect a “cluster-head” based on probability. We found this protocol most suitable to our implementation. It provided low message overhead, scalability, and was easy to simulate. Our implementation differs from LEACH because we do not simulate energy consumption or the randomization of cluster-heads. This applies most directly to sensor networks with wired sensors. Otherwise it adheres to LEACH, in that we implement similar cluster-head election, cluster formation, and cluster communication.

References:

[1] Heinzelman , Wendi; Chandrakasan, Anantha; Balakrishnan, Hari: Low Energy-Efficient Communication Protocol for Wireless Microsensor Networks. Massachusetts Institute of Technology, Cambridge.
[2] Cugola, G; Jacobsen, HA. “Using publish/subscribe middleware for mobile systems.” ACM SIGMOBILE Mobile Computing and Communications Review, 2002.

[3] Oh, Songhwai and Sastry, Shankar. A hierarchical multiple tracking Algorithm for Sensor networks. Berkeley CA, Jan 2004. http://webs.cs.berkeley.edu/retreat-1-04/slides/songhwai_oh-hmtt_nest-retreat04.ppt
[4] Levis, Philip; Lee, Nelson; Welsh, Matt; and Culler, David. TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications. http://www.cs.berkeley.edu/~pal/pubs/tossim-sensys03.pdf
[5] Levis, Philip and Lee, Nelson. TOSSIM: A Simulator for TinyOS Networks. http://www.cs.berkeley.edu/~pal/pubs/nido.pdf
[6] Baldwin, Philip J. Sensor network Modeling and Simulation in Ptolemy 2. Berkeley CA, Aug 2003. http://chess.eecs.berkeley.edu/projects/ITR/2003/BaldwinPaper.pdf
[7] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan Kung, Ning Li, Hyuk Lim, Hung-Ying Tyan, and Honghai Zhang. J-Sim: A Simulation and Emulation Environment for Wireless Sensor Networks

http://www.j-sim.org/v1.3/sensor/JSim.pdf
[8] Kyatham, Raghavendra. Algorithms in sensor networks.
http://ranger.uta.edu/~gdas/Courses/Fall2004/advAlgos/finalPresentations/Raghavendra_Algorithms%20in%20sensor%20networks.ppt#256
[9] Woo, Ale; Tong, Terrence; Culler, David. Taming the underlying Challenges of Reliable Multihop Routing in Sensor networks. Berkeley CA, ACM 2003. http://www.cs.berkeley.edu/~awoo/sensys_awoo03.pdf
[10] Li, Qun; Aslam, Javed; Rus, Daniella. Hierarchical Power-aware Routing in Sensor Networks

Rutgers University, May 21, 2001.

http://www.cs.wm.edu/~liqun/paper/dimacs.pdf
